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Here, we describe a first-principles derivation of the macroscopic Poynting vector, heating rate, and stored
energy in arbitrary composite media formed by dielectric and metallic inclusions, taking into account the
effects of artificial magnetism, bianisotropy, as well as spatial dispersion. Starting from the microscopic
Maxwell’s equations in an arbitrary periodic structured material, we demonstrate that in some situations it is
possible to obtain a mathematically exact relation between quadratic expressions of the microscopic fields
�such as the cell-averaged microscopic Poynting vector� and the macroscopic electromagnetic fields and the
effective dielectric function.
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I. INTRODUCTION

Structured materials with unusual electromagnetic proper-
ties have received significant attention after several influen-
tial works1–4 revealed that by tailoring the microstructure of
conventional metals and dielectrics it is possible to change
radically the propagation of light in such media. Remarkable
effects, such as negative refraction,5,6 subwavelength
imaging,7,8 cloaking,9,10 and inversion of the palette of re-
fracted colors by a lossless metamaterial prism,11 have been
theoretically predicted and �in some cases� experimentally
demonstrated.

Somehow similar to conventional crystalline materials,
metamaterials typically consist of many identical inclusions
arranged in a regular lattice. The dimensions of the inclu-
sions are much smaller than the wavelength of radiation. The
study of such complex systems is much simplified by the use
of homogenization techniques, which enable the character-
ization of the electromagnetic wave propagation using only a
few effective parameters, in the simplest case two scalars: an
effective permittivity and an effective permeability. Indeed,
an important characteristic of metamaterials is that their
magnetic response may be quite strong, notwithstanding the
fact that the basic constituents of the material �typically me-
tallic or dielectric particles� do not have intrinsic magnetic
properties.1 This artificial magnetism is induced by the vor-
tex part of the electric current induced in the inclusions,
which in some scenarios may mimic very closely the re-
sponse of a true magnetic particle.12

Even though the use of homogenization methods to char-
acterize electromagnetic wave propagation in composite me-
dia has a quite long history13 and fundamental concepts such
as “heating rate,” “stored electromagnetic energy,” and
“Poynting vector” are well established, at least in connection
to the propagation of electromagnetic waves in matter, ap-
parently, as a survey of the recent scientific literature
reveals14–17 the definitions of such quadratic macroscopic en-
tities is still a reason of some controversy. In particular, in
Ref. 14 it was claimed the usual formulas for the macro-
scopic heating rate and Poynting vector are inapplicable in
magnetic polarizable media and based on such conclusion it
was concluded that negative refraction is impossible. Spe-

cifically, it was argued that the usual textbook formula for
the macroscopic �and time-averaged� Poynting vector Sav

= 1
2Re�E�H�� is incorrect and should be replaced by the

alternative formula Sav= 1
2Re�E�

B�

�0
� �in this work we use SI

unities and assume a time harmonic variation of the type
e−i�t�. In Ref. 16 the authors have reached a similar conclu-
sion based on a microscopic phenomenological model. How-
ever, as it will be clearly demonstrated in this work and also
addressed in part in Ref. 15, such conclusions are founded on
fundamental misconceptions and mistakes.

The objective of this paper is to present a first-principles
derivation of quadratic physical entities such as the Poynting
vector in arbitrary structured materials. Starting from the mi-
croscopic Maxwell’s equations in an arbitrary metallic-
dielectric periodic material, we calculate rigorously the mac-
roscopic expression of the Poynting vector �Sav�, heating rate
�qav�, and stored electromagnetic energy �Wav�, in terms of
the macroscopic fields and of the effective dielectric func-
tion. Surprisingly, we find out that for a Bloch-Floquet mode
in a lossless metamaterial it is possible to obtain a math-
ematically exact relation between the cell-averaged micro-
scopic quadratic functions of interest �e.g., the Poynting vec-
tor� and the macroscopic electromagnetic fields. Moreover,
the obtained formulas are coincident with the well-known
textbook formulas of classical electrodynamics. Therefore,
our analysis establishes that in some situations the traditional
formulas for the macroscopic Poynting vector, heating rate,
and stored energy �understood as the spatial average of the
corresponding microscopic entities� are absolutely exact.
Moreover, we demonstrate that in some circumstances it is
also possible to calculate the exact expression of the macro-
scopic Poynting vector when the microscopic fields are a
superposition of an arbitrary number of Bloch-Floquet natu-
ral modes, possibly associated with complex wave vectors.

Our analysis is completely general and takes into account
possible effects of spatial dispersion in the composite mate-
rial. Indeed, we treat the special case where the material’s
response can be regarded as local �described by local effec-
tive parameters, such as a local permittivity and a local per-
meability� as a particular case of a general material with a
nonlocal response.
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It is important to make clear that the results obtained in
this work are based on the assumption that the microscopic
�time-averaged� Poynting in a structured material formed by
dielectric or metallic particles �with no magnetic properties�
is 1

2Re�e�
b�

�0
�, where e and b are the microscopic electric

and magnetic induction fields. Indeed, even the very defini-
tion of the Poynting vector �as the flow of electromagnetic
energy at a point� is also a subject of some debate18,19 but
such discussion is out of the scope of the present paper. Our
objective is only to obtain an expression for the macroscopic
Poynting vector �understood as the cell-averaged micro-
scopic Poynting vector� consistent with the conventional
definition of the microscopic Poynting vector. It is also es-
sential to clarify the meaning of the word “microscopic” in
the context of the present work. Since we are dealing with
structured materials we can consider two different levels of
homogenization. The first level of homogenization is the tra-
ditional one and enables the description of the interaction of
electromagnetic radiation with each and every individual me-
tallic or dielectric inclusion as if it were made of a continu-
ous material with permittivity ��r�. The second level of ho-
mogenization enables the description of the array of
inclusions as a continuous �meta� material. By definition,
here the microscopic fields and the microscopic Poynting
vector are the ones defined after the first level of homogeni-
zation, whereas the macroscopic fields are the ones deter-
mined after the second level of homogenization.

This paper is organized as follows. In Sec. II, we describe
the homogenization formalism considered in this work, lay-
ing the foundations for the strict mathematical analysis of the
problem. In Sec. III, we present the first-principles derivation
of the macroscopic Poynting vector in arbitrary metallic-
dielectric metamaterials. In Sec. IV, we calculate the macro-
scopic stored energy and the macroscopic heating rate. Fi-
nally, in Sec. V we draw the conclusion.

II. HOMOGENIZATION FORMALISM

In this section, we describe with details the microscopic
theory used to define the effective parameters of the struc-
tured material and explain the adopted constitutive relations
and the averaging procedure. These concepts and ideas put
on firm theoretical ground, the homogenization process, and
will be used in Sec. III to relate the spatially averaged Poyn-
ting vector to the macroscopic electromagnetic fields.

We follow the method introduced in our previous
work,20,21 which enables modeling an arbitrary periodic
metamaterial formed by dielectric or metallic particles using
a nonlocal dielectric function of the type �ef f��� ,k�, where �
is the angular frequency and k= �kx ,ky ,kz� is the wave vector.
Such approach is valid for both materials with strong spatial
dispersion and materials with weak spatial dispersion. In par-
ticular, as discussed in Refs. 20, 22, and 23, if a metamaterial
can be accurately modeled with the traditional bianisotropic
constitutive relations,24,25 then it may be as well character-
ized by a spatially dispersive model such that the nonlocal
dielectric function is linked to the local parameters as fol-
lows:

�ef f�

�0
��,k� = �r� − �� · �r�

−1 · �� +
c

�
��� · �r�

−1 � k − k � �r�
−1 · ���

+
c2

�2k � ��r�
−1 − I�� � k , �1�

where I� is the identity dyadic, �r���� is the relative local
permittivity dyadic, �r���� is the relative local permeability,

and ����� and ����� are tensors that characterize the magne-
toelectric coupling. For more details the reader is referred to
Ref. 20.

In the next sections we present a brief overview of the
theory of Ref. 20, explaining how the nonlocal dielectric
function may be determined for a general metamaterial. It
should be noted that there are some notational changes as
compared to Ref. 20 because in this work the microscopic
fields are denoted with lowercase letters whereas the macro-
scopic fields are represented using capital letters and in ad-
dition here we adopt the time convention e−i�t while in Ref.
20 the time convention ej�t was assumed.

A. Spatial averaging

We consider a periodic structured material formed by me-
tallic or dielectric inclusions of arbitrary shape, and charac-
terized by the permittivity �=��r� and �=�0 �all the mate-
rials are nonmagnetic�. The unit cell of the periodic material
is denoted by �. The Maxwell’s equations in the structured
material are of the form

� � e = i�b; � �
b

�0
= je + jd − i��0e , �2�

where e and b are the microscopic electric and magnetic
induction fields, respectively, je is the external �applied� den-
sity of electric current, and jd=−i���−�0�e is the density of
current induced in the inclusions.

Following the ideas of Ref. 26 �see also Ref. 27�, the
average electric and magnetic induction fields may be de-
fined through a spatial convolution with a suitable test func-
tion f�r�. The test function must be real valued, nonzero in
some neighborhood of the origin, and such that when inte-
grated over all space the result is unity. The support of the
test function has a scale length comparable to the lattice con-
stant. The average macroscopic electric field E is by
definition

E�r� =� e�r − r��f�r��d3r�, �3�

and the macroscopic magnetic induction field B and the mac-
roscopic external density of current Je are defined similarly.
The averaging procedure �Eq. �3�� has the important property
that it preserves the structure of Maxwell’s equations.26 Par-
ticularly, in the homogenized medium we have that

� � E = i�B; � �
B

�0
= Je − i���0E + Pg� , �4�

where by definition Pg�r�= 1
−i��jd�r−r��f�r��d3r� is the gen-

eralized polarization vector obtained by averaging the micro-
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scopic currents, jd=−i���−�0�e, induced in the structured
material. The key problem in homogenization theory is to
relate Pg with the macroscopic electric field E. For spatially
dispersive materials the following constitutive relation is as-
sumed:

Dg�r� =� �̂ef f
���,r��E�r − r��d3r�, �5�

where Dg=�0E+Pg is the electric displacement and
�̂ef f
��� ,r� is the nonlocal dielectric function of the material in
the space domain.

It should be noted that the averaging procedure �Eq. �3��
is equivalent to spatial filtering.26 Specifically, the convolu-
tion operation may be regarded as low-pass filtering that
eliminates the fluctuations of the microscopic fields over
scale lengths comparable to the characteristic dimension of
the inclusions. Based on this observation, it is interesting to
consider the case where the test function corresponds to an
ideal low-pass filter. Indeed, consider the test function deter-
mined by

f̃�k� = 	1, k � BZ

0, k � BZ

 , �6�

where BZ represents the first Brillouin zone and f̃�k�
=�f�r�e−ik·rd3r is the Fourier transform of the test function.
Moreover, consider the situation where the microscopic elec-
tric field e is a Bloch-Floquet wave associated with the �real-
valued� wave vector k �assumed to lie in the first Brillouin
zone�. Then, it is simple to verify that the average electric
field is given by

E�r� = Eave
ik·r, Eav = �e� , �7a�

�e� 

1

Vcell
�

�

e�r�e−ik·rd3r , �7b�

where � is the unit cell. Thus, the average field associated
with a Bloch-Floquet wave is a plane wave whose vector
amplitude is determined by the zero-order Fourier harmonic
Eav. Due to this important property, which enables us to
identify spatially averaged Bloch-Floquet waves with plane
waves, in this work we will assume that the test function is
determined by Eq. �6�.

In these circumstances, and still considering that the mi-
croscopic fields have a Bloch-Floquet spatial variation asso-
ciated with a certain wave vector k, it is found from Eqs. �5�
and �7� that Dg�r�=Dg,ave

ik·r and Pg�r�=Pg,ave
ik·r with

Dg,av = �0Eav + Pg,av = �ef f���,k� · Eav, �8�

Pg,av =
1

Vcell

1

− i�
�

�

jd�r�e−ik·rd3r �9�

being �ef f��� ,k�=��̂ef f
��� ,r�e−ik·rd3r the nonlocal dielectric

function in the spectral domain. Moreover, from the macro-
scopic Maxwell’s equations in Eq. �4�, it is readily seen that
the following relations are verified:20

− k � Eav + �Bav = 0, �10a�

���0Eav + Pg,av� + k �
Bav

�0
= − �Pe,av, �10b�

where Pe,av=Je,av / �−i��, and Bav and Je,av are the zero-order
Fourier harmonics of the magnetic induction field b and ex-
ternal density of current je, respectively.

B. Nonlocal dielectric function

It should be clear from Eq. �8� that to compute the non-
local �ef f� dielectric function for fixed �� ,k� it is sufficient to
determine the generalized polarization vector Pg,av associated
with three independent vectors Eav. Based on this simple
observation, in Ref. 20 we suggested that the nonlocal di-
electric function may be obtained by solving the microscopic
Maxwell’s equations in Eq. �2� for an external current den-
sity of the form je=Je,ave

ik·r, with Je,av a constant vector.
Indeed, for such excitation the microscopic fields are clearly
Bloch-Floquet waves associated with the wave vector k �im-
posed by the external source� and thus the corresponding
average electric field may be determined in terms of the mi-
croscopic electric field using Eq. �7�, whereas the generalized
polarization vector is given by Eq. �9�. Hence, by solving the
microscopic Maxwell’s equations in Eq. �2� for three inde-
pendent vectors Je,av �e.g., Je,av� ûi, i=1,2 ,3� and by com-
puting the associated Eav and Pg,av in terms of the micro-
scopic fields, it is possible to determine the unknown
nonlocal dielectric function.

A useful result derived in Ref. 20, which will be instru-
mental in Sec. III, is that the homogenization problem may
be reformulated as the following integral-differential system:

� � e = i�b , �11a�

� �
b

�0
= − i��e − i��P̂av�Eav� − P̂�e��eik·r �11b�

being P̂ and P̂av the following operators �here for simplicity,
and in contrast with Ref. 20, we do not consider explicitly
the possibility of perfect electric conducting inclusions�,

P̂�e� =
1

Vcell
�

�

���r� − �0�e�r�e−ik·rd3r , �12a�

P̂av�Eav� =
1

�2�0
��k2 − ��/c�2�I� − kk� · Eav �12b�

where k2=k ·k and kk
k � k is the dyadic �tensor� product

of two vectors. The operator P̂ maps a vector field into a

constant vector, whereas P̂av maps vectors into vectors.
In this formulation, Eav should be regarded as a given

parameter �i.e., the “source” or “input”� or in a different
perspective as the enforced macroscopic field �Eav� that de-
termines the unknown microscopic fields �e ,b�. In this
framework the external current, je=Je,ave

ik·r, satisfies Je,av

=−i��P̂av�Eav�− P̂�e��, i.e., depends explicitly on the en-
forced macroscopic electric field and on the unknown micro-
scopic electric field. The dielectric function �ef f��� ,k� can be
computed by solving the integral-differential system �Eq.
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�11�� for three independent vectors Eav �e.g., Eav� ûi, i
=1,2 ,3� and by computing the associated Pg,av in terms of
the microscopic fields.

In Ref. 20 it was proven that the solution �e ,b� of the
homogenization problem varies smoothly with the param-
eters �� ,k ,Eav�, even in the vicinity of points associated
with a Bloch-Floquet natural mode of the material �solution
of Eq. �2� with je=0�. Clearly, if �� ,k ,Eav� is associated
with a Bloch-Floquet natural mode then the corresponding
solution of the system �Eq. �11�� is such that the external

current, Je,av=−i��P̂av�Eav�− P̂�e��, vanishes. For further de-
tails the reader is referred to Ref. 20.

III. MACROSCOPIC POYNTING VECTOR

Here, we will show that when the metamaterial is lossless
and the microscopic field is a Bloch-Floquet wave it is pos-
sible to obtain an exact mathematical relation between the
macroscopic Poynting vector, the macroscopic fields and the
nonlocal dielectric function. In particular, we will prove that
for a local metamaterial with a magnetic response the mac-
roscopic Poynting vector reduces to the classical textbook
formula.

In Sec. III A, we obtain a fundamental mathematical re-
sult that establishes the relation between the spatial average
of an auxiliary quadratic expression involving the micro-
scopic fields and the macroscopic fields. In Sec. III B, we
apply that result to calculate the macroscopic Poynting vec-
tor associated with a Bloch-Floquet natural mode. Finally, in
Sec. III C it is shown that in some scenarios it is also pos-
sible to compute the macroscopic Poynting vector associated
with a superposition of Bloch-Floquet modes in closed ana-
lytical form.

Since by hypothesis the metamaterial is lossless and peri-
odic, it is assumed here that the permittivity of the inclu-
sions, �=��r�, is periodic and real valued.

A. Spatial average of the product of Bloch modes

Let e1 and e2 be Bloch-Floquet natural modes of the pe-
riodic material �associated with the wave vectors k1 and k2,
respectively�. Thus, e1 and e2 satisfy the microscopic Max-
well’s equations in Eq. �2� with je=0 or equivalently

� � � � e = �2��0e . �13�

It is assumed that the wave vectors k1 and k2, which in
general may be complex valued, are linked by the relation
�the “ �” denotes complex conjugation�,

k1 = k2
�. �14�

The above condition ensures that e1 and e2
� are Bloch-Floquet

waves associated with symmetric wave vectors, and, in par-
ticular, e1 ·e2

� and e1�e2
� are periodic functions. In the fol-

lowing it is formally demonstrated that the vector s1,2 defined
by

s1,2 

1

− 4i��0
�e1 � � � e2

� − e2
� � � � e1� �15�

verifies

�s1,2�av,l =
1

4
�Eav,1 �

Bav,2
�

�0
+ Eav,2

� �
Bav,1

�0
�

l

−
�

4
Eav,2

� ·
��ef f�

�kl
��,k1� · Eav,1 �l = x,y,z� ,

�16�

where �ef f� is the dielectric function of the composite material
defined as in Sec. II, Eav,n and Bav,n are the macroscopic
averaged electric and magnetic induction fields associated
with the microscopic field en �n=1,2�, defined consistently
with Eq. �7� and linked by Eq. �10a�, and �s1,2�av is the spa-
tial average of s1,2 in the unit cell,

�s1,2�av =
1

Vcell
�

�

s1,2d3r . �17�

In Eq. �16� the subscript l refers to the lth Cartesian compo-
nent of a given vector �e.g., �s1,2�av,l
�s1,2�av · ûl�. It should
be clear that because of Eq. �14� s1,2 is a periodic function in
the lattice.

In order to demonstrate the enunciated result, first we note
that s1,2 may be rewritten as

�s1,2�l =
1

4��0
�e1 · � � � � �ixle2�� − �ixle2�� · � � � � e1

+ i � · ��ûl � e2
�� � e1� + ixl�e1 · � � � � e2

� − e2
� · �

� � � e1�� . �18�

The last term in the right-hand side of the above equation
vanishes because the fields e1 and e2 satisfy Eq. �13�, and the
material is assumed lossless ��=��r� is real valued�.

On the other hand, if f2 is an arbitrary vector field the
following vector identity holds:

0 = e1 · � � � � f2
� − f2

� · � � � � e1

− � · �f2
� � � � e1 − e1 � � � f2

�� . �19�

Let us assume that f2 also verifies the Bloch-Floquet property
and is associated with the same wave vector �k2� as e2 �how-
ever, f2 is not necessarily a solution of Maxwell’s equations�.
Then, adding Eqs. �18� and �19� member by member and
integrating the resulting equation over the unit cell, and us-
ing Eq. �13�, it is found that

�s1,2�av,l =
1

Vcell

1

4��0
�

�

e1 · �� � � � �ixle2 + f2�

− �2��0�ixle2 + f2���d3r . �20�

To obtain the above result we took into account that the
volume integrals of terms of the type � · �¯ � vanish because
of Gauss’s theorem and of the assumed Bloch-Floquet con-
ditions.

To proceed, we consider the family of solutions of the
homogenization problem �Eq. �11�� parameterized by the
wave vector k, e2,F=e2,F�r ;k�, with the parameter Eav in Eq.
�11b� equal to Eav,2= �e2�. It should be clear that the spatial
average of e2,F, defined as in Eq. �7b�, verifies �e2,F�=Eav,2,
independent of k. In other words the family e2,F=e2,F�r ;k�
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yields after proper homogenization the family of plane
waves Eav,2eik·r. Clearly, e2,F verifies the integral-differential
system,

� � � � e2,F = + i��0Jav,2�k�eik·r + �2��0e2,F, �21�

where the amplitude of the external source verifies

Jav,2�k� = − i��P̂av�Eav,2� − P̂�e2,F�� . �22�

The solution of the system �Eq. �21�� is a smooth function of
the wave vector. Moreover, since �e2�=Eav,2 it should be
clear from the discussion in the end of Sec. II that for k
=k2 the amplitude of the external density of current given by
Eq. �22� vanishes: Jav,2�k2�=0. Hence, from Eq. �13� it fol-
lows that e2 is a solution of the homogenization problem �Eq.
�21�� associated with k=k2, i.e., we have proven that e2
=e2,F�r ;k=k2�. Therefore, we may drop the subscript “F” in
the definition of e2,F and regard the original electromagnetic
field e2 as a function of both r and k, i.e., e2=e2�r ;k�.

In particular, calculating the derivative of both members
of Eq. �21� with respect to kl at k=k2, it is found that

� � � �
�e2

�kl
= + i��0

�Jav,2

�kl
eik2·r + �2��0

�e2

�kl
,

k = k2 �l = x,y,z� . �23�

Next we note that since e2 is a Bloch-Floquet wave �i.e.,
e2�r ;k�=u�r ;k�eik·r with u a periodic function� we have that
�e2

�kl
is of the form

�e2

�kl
= ixle2+ f2, being f2 a Bloch-Floquet

wave also associated with k2. Hence, we may replace ixle2

+ f2 by
�e2

�kl
in Eq. �20�. Using Eq. �23�, it is seen that

�s1,2�av,l =
1

Vcell

− i

4
�

�

e1�r� ·
�Jav,2

�

�kl
e−ik2

�·rd3r . �24�

From the definition �Eq. �22�� it should be clear that Jav,2 is
independent of the space coordinates. Thus, using Eqs. �7�
and �14� we find that

�s1,2�av,l =
− i

4
Eav,1 · � �Jav,2

�

�kl
�

k2

. �25�

To further simplify this result, we use the fact that Jav,2 may
be written explicitly in terms of the nonlocal dielectric func-
tion �ef f��� ,k� of the composite material. Indeed, from Eqs.
�8�, �9�, and �12�, we have that

Jav,2�k� = − i��0�−
1

�0
�ef f���,k� +

c2

�2k2I� −
c2

�2kk� · Eav,2.

�26�

Thus, calculating the derivative of Jav,2 with respect to kl and
substituting in Eq. �25�, we have that

�s1,2�av,l =
��0

4
Eav,1 · �−

1

�0

��ef f�

�kl
��,k2� +

c2

�22ûl · k2I�

−
c2

�2 �ûlk2 + k2ûl���

· Eav,2
� , �27�

where ûlk2
 ûl � k2 represents the dyadic �tensor� product

of two vectors. But straightforward calculations show that
�using k1=k2

��

1

4
�Eav,1 �

Bav,2
�

�0
+ Eav,2

� �
Bav,1

�0
� · ûl

=
1

4��0
Eav,1 · �2ûl . k2I� − �ûlk2 + k2ûl��� · Eav,2

� .

�28�

Thus, Eq. �27� may be rewritten as

�s1,2�av,l =
1

4
�Eav,1 �

Bav,2
�

�0
+ Eav,2

� �
Bav,1

�0
�

l

−
�

4
Eav,1 · � ��ef f�

�kl
��,k2� · Eav,2��

. �29�

The dielectric function of a structured material verifies �� is
assumed real valued in this work; the material is
reciprocal�,20,28

��ef f���,k��� = �ef f��− �,− k�� = ��ef f��− �,k���T, �30�

where the superscript “T” represents the transpose dyadic.
Moreover, in case of a lossless material the dielectric func-
tion must be an even function of � �this follows directly
from the definition of �ef f� given in Sec. II�,

�ef f���,k� = �ef f��− �,k� �lossless material� . �31�

Hence we have that

��ef f���,k��� = ��ef f���,k���T. �32�

Substituting the above formula into Eq. �29�, and using again
the relation k1=k2

�, we finally obtain the desired relation �Eq.
�16��.

To conclude this section, we mention that by slightly
modifying the previous demonstration, it can be shown that
Eq. �16� remains valid even when e1 and e2 are not natural
modes of the material. The only essential conditions are that
Eq. �14� holds and that e1 and e2 are Bloch-Floquet waves
that verify the microscopic Maxwell’s equations in Eq. �2�
for a source of the type je=Je,ave

ik·r, with Je,av a constant
vector.

B. Poynting vector for a propagating mode

Using the fundamental result derived in Sec. III A, it is
straightforward to calculate the macroscopic Poynting vector
associated with a propagating Bloch-Floquet natural mode
e=e�r� of the periodic material. Indeed, when k is real val-
ued we can choose e2=e1=e in Eq. �15�. Moreover, in that
case it is clear that s1,2 is coincident with the microscopic
Poynting vector s= 1

2Re�e�
b�

�0
�. Thus, Eq. �16� establishes

the following important relation:

Sav,l =
1

2
Re	�Eav �

Bav
�

�0
�

l

 −

�

4
Eav

� ·
��ef f�

�kl
��,k� · Eav

�l = x,y,z� , �33�

where
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Sav =
1

Vcell
�

�

1

2
Re	e �

b�

�0

d3r . �34�

It is stressed that Eq. �33� is mathematically exact, and only
assumes that the structured material is lossless and periodic,
that k is real valued, and that the macroscopic electromag-
netic fields and the effective dielectric function are defined as
in Sec. II. Quite interestingly, the derived formula is com-
pletely consistent with the well-known formula for the Poyn-
ting vector in spatially dispersive materials, reported, for ex-
ample, in Refs. 28 and 29. However, the derivation reported
in Ref. 28 is based solely on the macroscopic �homogenized�
Maxwell’s equations while the proof reported here follows
directly from first principles, i.e., from microscopic theory.
Notice that, as follows from Eq. �32�—see also Ref. 28—for
a lossless reciprocal material and real valued k the nonlocal
dielectric function is Hermitian, and thus the second term in
the right-hand side of Eq. �33� is real valued, as it should.

Let us consider now the important particular case where
the composite material is characterized by weak spatial dis-
persion and is such that its response is effectively local and
described in terms of local permittivity and permeability ten-
sors, �r���� and �r����, and in addition, for gyrotropic mate-

rials, with tensors ����� and ����� related to the magnetoelec-
tric coupling �see Ref. 20; a somehow related analysis is
presented in Ref. 30�. As discussed in Sec. II, such materials
can be as well characterized by a nonlocal dielectric function
defined as in Eq. �1�. Hence, in terms of the local parameters
we have that

Eav
� ·

1

�0

��ef f�

�kl
��,k� · Eav

= Eav
� ·

c

�
��� · �r�

−1 � ûl − ûl � �r�
−1 · ��� · Eav

+ Eav
� · � c2

�2 ûl � ��r�
−1 − I�� � k

+
c2

�2k � ��r�
−1 − I�� � ûl� · Eav. �35�

Using the vector properties,

�A� � a� · b = A� · �a � b�; a · �b � A� � = �a � b� · A�

�36�

valid for generic vectors a and b and a generic dyadic A� , and
using the identity Bav=k�Eav /�, which follows from Eq.
�10a�, it is readily found that

Eav
� ·

1

�0

��ef f�

�kl
��,k� · Eav

=
c2

�
�1

c
Eav

� · �� · �r�
−1 − Bav

� · ��r�
−1 − I��� · �ûl � Eav�

+
c2

�
�Eav

� � ûl� · �−
1

c
�r�

−1 · �� · Eav + ��r�
−1 − I�� · Bav� .

�37�

Since from reciprocity �r� must be symmetric and �� =−��T,24,25

and because in the lossless case �r� is real valued whereas �� is
imaginary pure, it follows that

Eav
� ·

1

�0

��ef f�

�kl
��,k� · Eav

= −
c2

�
�ûl � Eav� · �−

1

c
�r�

−1 · �� · Eav + ��r�
−1 − I�� · Bav��

−
c2

�
�ûl � Eav

� � · �−
1

c
�r�

−1 · �� · Eav + ��r�
−1 − I�� · Bav� .

�38�

Hence, substituting the above formula into Eq. �33� and us-

ing again the identity a · �b�A� �= �a�b� ·A� , we finally ob-
tain that

Sav =
1

2
Re	Eav � ��0

−1�r�
−1 · Bav −

�0
−1

c
�r�

−1 · �� · Eav��
 .

�39�

The above formula gives the macroscopic Poynting vector
associated with a generic local material characterized by the
relative permeability tensor �r� and by the magnetoelectric

coupling tensor �� . Notably, the term in rectangular brackets
in Eq. �39� is nothing more than the traditional formula for
the macroscopic magnetic field in local media �described by
the usual bianisotropic constitutive relations; see Refs. 20,

24, and 25�: Hav
�0
−1�r�

−1 ·Bav−
�0

−1

c �r�
−1 ·�� ·Eav. Thus, our

results demonstrate that for local media the correct formula
for the macroscopic Poynting vector is coincident with the
traditional one, i.e., Sav= 1

2Re�Eav�Hav�, and that the claims
of Refs. 14 and 16 that such formula does not apply for
media with artificial magnetism are completely unsubstanti-
ated.

Let us make some additional considerations about the re-
sults of Refs. 14 and 16. The main reason for some of the
misunderstandings of Refs. 14 and 16 is the fact that the
relation between the spatially averaged macroscopic fields
and spatially averaged quadratic expressions like the Poyn-
ting vector is not trivial. Indeed, let � . �space be some �linear�
operator that represents spatial averaging �not necessarily the
one we adopted in Sec. II� so that E= �e�space and B
= �b�space. It is quite obvious that in general E�B�� �e
�b��space �in the same manner as �E�2� ��e�2�space� and thus
the relation between the macroscopic Poynting vector Sav

�which may identified with 1
2Re��e�b� /�0�space�� and the

macroscopic fields is not evident. The authors of Ref. 16
failed to understand this property and this lead them to the
erroneous conclusion that Sav= 1

2Re�E�
B�

�0
�. Similarly, in

Ref. 14 �Eq. �25�� it was claimed that if we put e=E+�e and
b=B+�b, where �e and �b are the fluctuating parts of the
microscopic fields, then �e�b�space=E�B because the term
��e��b�space is “quadratic in field fluctuations and can be
omitted as small.” However, we find such claim completely
unjustified and in fact, as it is clear from our derivation, the
term ��e��b�space cannot be neglected in the general case. It
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is important to emphasize that the formula Sav= 1
2�0

Re�E
�B�� could be correct only if E�B�= �e�b��space, which in
general is obviously false. This argument alone would be
sufficient to the outright rejection of the theories of Refs. 14
and 16 �similar arguments may be used to reject the alterna-
tive formula for the heating rate suggested in Ref. 14�.

C. Poynting vector for a superposition of natural modes

In Sec. III B we have established a rigorous connection
between the cell-averaged microscopic Poynting vector asso-
ciated with a Bloch-Floquet natural mode and the macro-
scopic fields and effective parameters of the homogenized
medium. In order to obtain such elegant result we had to
require that the material is lossless and that the wave vector
is real valued. However, it would be certainly interesting to
extend such result at least to the case where the electromag-
netic field is a superposition of several natural modes, possi-
bly associated with complex-valued wave vectors. In the fol-
lowing, we demonstrate that this is possible in some
situations. Specifically, we will prove that when the micro-
scopic electromagnetic fields are a superposition of natural
modes associated with the wave vectors kn �n=1,2 , . . .�,
such that the projection of all the kn onto a given plane �let
us say for definiteness the xoy plane� is the same and real
valued, then it is possible to write the z component of the
averaged Poynting vector in terms of the macroscopic fields
and of the nonlocal dielectric function. Notice that the de-
scribed scenario is quite important in practical problems. For
example, it is well known that when a plane wave illumi-
nates a periodic structure �let us say a metamaterial slab�, the
field inside the slab can be written exclusively in terms of
Bloch-Floquet modes, in general, associated with complex-
valued wave vectors kn, and such that the projection of kn
onto the interface is equal to the projection of the wave vec-
tor of the incident wave onto the interface.31

To demonstrate the enunciated property, first we need to
obtain an auxiliary result. As in Sec. III A, the metamaterial
is assumed lossless. Without loss of generality, it is supposed
that the unit cell of the metamaterial can be decomposed as
follows:

� = �T � �−
a�

2
,
a�

2
� , �40�

where �T is the transverse unit cell that defines the period-
icity in the xoy plane and a� is the lattice constant along the
z direction. For convenience we introduce the following
2-form:

	�e1,e2� 

1

4
�

�T

�e2 � � � e1
� − e1

� � � � e2� · ûzdxdy .

�41�

Clearly, 	�e , ·� is linear in the second argument and
	�e1 ,e2�=−	�e2 ,e1��. Moreover, it is simple to verify that if
e is the electric field associated with an electromagnetic
wave then 	�e ,e� / �−i��0� is the power that crosses the
transverse cell in the z direction.

In general, 	�e1 ,e2� is a function of the z. However, when
both e1 and e2 satisfy the homogeneous Maxwell’s equations
in a lossless material and if in addition they have the Bloch-
Floquet property in the x and y coordinates �being associated
with the real-valued transverse wave number k� = �kx ,ky ,0�;
the variation along z may be arbitrary�, then 	�e1 ,e2� be-
comes independent of z. Indeed, from Eq. �13� it follows that
� · �e2���e1

�−e1
����e2�=0 and thus, applying Gauss’s

theorem and using the Bloch-Floquet conditions to show that
the integral over the lateral wall’s vanishes, it is readily
found that 	�e1 ,e2� has the same value at two arbitrary val-
ues of z.

Another interesting property, still assuming that e1 and e2
satisfy the homogeneous Maxwell’s equations and have the
Bloch property in the xoy plane, is that 	�Ta�

e1 ,Ta�
e2�

=	�e1 ,e2�, where Ta�
represents the translation operator de-

fined by �Ta�
e��r�
e�r+a�ûz� for a generic field e. In fact,

from the definition �Eq. �41�� it is easy to verify that
	�Ta�

e1 ,Ta�
e2� �z=	�e1 ,e2� �z+a�

=	�e1 ,e2� �z where the sec-
ond identity is a consequence of 	�e1 ,e2� being independent
of z.

Let us now suppose that besides satisfying the Bloch-
Floquet condition in the xoy plane, e1 and e2 have the same
property along the z direction. Thus, e1 is associated with a
wave vector of the form k1=k� +kz

�1�ûz, whereas e2 is associ-
ated with k2=k� +kz

�2�ûz; kz
�1� and kz

�2� may be complex valued.
It was proven in the previous paragraph that
	�Ta�

e1 ,Ta�
e2�=	�e1 ,e2�. But for Bloch waves we have

that Ta�
e1=eikz

�1�a�e1 and Ta�
e2=eikz

�2�a�e2. Hence, it follows

that �eikz
�2�a�e−ikz

�1��a� −1�	�e1 ,e2�=0 and thus we have proven
that

	�e1,e2� = 0 if kz
�2� − kz

�1�� �
2


a�

l for every l integer.

�42�

In particular, the above result implies that if e is the electric
field associated with Bloch-Floquet natural mode associated
with a complex wave vector k=k� +kzûz �with kz complex
valued, Im�kz��0, and k� real valued�, then 	�e ,e�=0, i.e.,
as could be expected for evanescent modes there is no power
flow along the z direction.

We are now ready to determine the macroscopic Poynting
vector associated with a superposition of natural modes in a
structured material. To this end, let us then consider that the
microscopic electric field is the superposition of a set of
Bloch-Floquet modes,

e�r� = �
n

en�r;kn� �43�

being the wave vector of the form kn=k� +kz
�n�ûz, with k�

= �kx ,ky ,0� real valued and independent of the considered
mode. The z component of the wave vector kz

�n� may be com-
plex valued. It is supposed that −
 /a��Re�kz

�n���
 /a�

�this is always possible due to the assumed Bloch property�.
As mentioned before, 	�e ,e� / �−i��0� is the power that
crosses the transverse cell in the z direction. Hence, since
	�e ,e� is independent of z, it is clear that
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Sav,z =
1

− i��0

1

Acell
	�e,e� , �44�

where Sav, defined as in Eq. �34�, is the cell-averaged micro-
scopic Poynting vector and Acell is the area of the transverse
cell �T. Substituting Eq. �43� into Eq. �44� and using for-
mula �42�, it is found after straightforward simplifications
that

Sav,z = �
n

kz
�n� real

1

− i��0

1

Acell
	�en,en�

+ �
n,m

n�m

kz
�m�=kz

�n��

1

− i��0

1

Acell
	�en,em� . �45�

To obtain the above formula we have used the fact that the
condition “kz

�m�−kz
�n��� 2


a�
l for every l integer,” is equivalent

to kz
�m��kz

�n�� since it is assumed that −
 /a��Re�kz�
�
 /a�. Clearly, the first summation in the right-hand side
of Eq. �44� corresponds to the contribution of the propagat-
ing modes to the averaged Poynting vector, whereas the sec-
ond summation yields the contribution of the evanescent
modes �note that in general such contribution does not need
to vanish because a superposition of evanescent waves may
transport power�.

Using Eqs. �33� and �44� it is possible to write the first
parcel in the right-hand side of Eq. �45� in terms of the
macroscopic fields and of the nonlocal dielectric function.
On the other hand, it is simple to verify from the definition
�Eq. �41�� that

1

− i��0

1

Acell
	�en,em� =

1

Vcell
�

�

sm,n · ûzd
3r = �sm,n�av,z,

�46�

where sm,n is defined consistently with Eq. �15�. Hence, using
formula �16�, we finally conclude that

Sav,z = �
n

kz
�n� real

1

2
Re	�Eav,n �

Bav,n
�

�0
� · ûz
 −

�

4
Eav,n

� ·
��ef f�

�kz
��,kn� · Eav,n

+ �
n,m

n�m

kz
�m�=kz

�n��

1

4
�Eav,m �

Bav,n
�

�0
+ Eav,n

� �
Bav,m

�0
� · ûz −

�

4
Eav,n

� ·
��ef f�

�kz
��,km� · Eav,m. �47�

In the above, Eav,n= �en� is the amplitude of the macroscopic
electric field associated with en, defined as in Eq. �7b�,
Bav,n=kn�Eav,n /� is the amplitude of the corresponding
macroscopic magnetic induction field, and �ef f��� ,k� is the
nonlocal dielectric function of the composite material. The
derived formula is mathematically exact, and only requires
that the metamaterial is lossless and k� is real valued. It
establishes the precise relation between the cell-averaged z
component of the microscopic Poynting vector and the mac-
roscopic fields obtained after homogenization.

IV. MACROSCOPIC HEATING RATE AND STORED
ENERGY

Here, under premises similar to those of Sec. III, we cal-
culate the expressions of the macroscopic stored electromag-
netic energy �Sec. IV A� and of the heating rate �Sec. IV B�
in an arbitrary structured periodic material with nonmagnetic
inclusions.

A. Stored electromagnetic energy

Let us consider a family of electromagnetic natural modes
e�r ;k� associated with the frequency �=��k� �which deter-

mines the dispersion relation of the considered natural
modes� in a lossless periodic metamaterial. Thus, for each
wave vector k fixed, e�r ;k� verifies the microscopic Max-
well’s equations in Eq. �2� with je=0. It should be noted that
the considered family of modes is essentially different from
that introduced in Sec. III A, even though both families are
parameterized by the wave vector k. Indeed, in general, the
family of modes considered in Sec. III A is associated with
some excitation je�0 and is such that the frequency � is not
linked to k.

It is a well known from the theory of dielectric photonic
crystals that the cell-averaged microscopic Poynting vector
associated with a natural mode with k real valued is equal to
the product of the group velocity vg=�k� of the mode and
the cell-averaged stored electromagnetic energy �Ref. 31, p.
30� �actually Ref. 31 only considers the case where the in-
clusions’ material is nondispersive, ��

�� =0, but the result can
be readily extended to the dispersive case as shown below�,

Sav = Wav�k� , �48a�
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Wav =
1

4Vcell
�

�

�b�2

�0
d3r +

1

4Vcell
�

�

�

��
�����e�2d3r ,

�48b�

where Sav is defined as in Eq. �34�. The first term in the
right-hand side of Eq. �48b� is the cell-time-averaged stored
magnetic energy, whereas the second term is the cell-time-
averaged stored electric energy. Our objective is to relate Wav
with the macroscopic fields.

To begin with, we note that from Eq. �7� the macroscopic
electric field associated with the family of natural modes
e�r ;k� is

E = E�r;k� = Eav�k�eik·r. �49�

The macroscopic field verifies the macroscopic Maxwell’s
equations in Eq. �4� with Je=0. It can be verified by direct
manipulations of Eq. �10� �with Pe,av=0 and Pg,av
=�ef f��� ,k� ·Eav−�0Eav; see Ref. 28, pp. 65–67� that the
macroscopic fields are such that

1

2
Re	�Eav �

Bav
�

�0
�

l

 −

�

4
Eav

� ·
��ef f�

�kl
��,k� · Eav

=
��

�kl
�1

4

�Bav�2

�0
+

1

4
Eav

� ·
�

��
���ef f�� · Eav� �50�

for l=x ,y ,z. But from the fundamental result derived in Sec.
III B �Eq. �33�� the left-hand side of the above equation is
exactly the lth Cartesian component of the cell-averaged
Poynting vector Sav. Therefore, comparing Eqs. �48� and
�50�, it follows that

Wav =
1

4

�Bav�2

�0
+

1

4
Eav

� ·
�

��
���ef f�� · Eav. �51�

It must be emphasized that Eq. �51� is mathematically exact.
It assumes that the microscopic electromagnetic field is a
Bloch-Floquet natural mode associated with a real-valued
wave vector k and that the metamaterial is lossless. Equation
�51� establishes the precise relation between the space-time-
averaged stored microscopic electromagnetic energy and the
macroscopic effective parameters. The derived formula is
completely consistent with the result reported in Ref. 28,
which was derived using the macroscopic Maxwell’s equa-
tions. Here, we have demonstrated that such result is com-
patible with microscopic theory.

It is interesting to consider the particular case where the
material’s response is local and is described by local permit-
tivity and permeability tensors, �r���� and �r����, so that the

nonlocal dielectric function is as in Eq. �1� with �� =�� =0 �for
simplicity, it is assumed that there are no bianisotropic ef-
fects�. Under such premises, using the vector identities Eqs.
�10a� and �36�, it is readily found that

Wav =
1

4

�Bav�2

�0
−

�2

4�0
Bav

� ·
�

��
� 1

�
��r�

−1 − I��� · Bav

+
1

4
Eav

� ·
�

��
���0�r�� · Eav. �52�

Using now the identity �
���r�

−1=−�r�
−1 ·

��r�

�� ·�r�
−1, and defining

the magnetic field in the classical way, Hav=�0
−1�r�

−1 ·Bav, the
stored energy may be rewritten as

Wav =
1

4
Hav

� ·
�

��
���0�r�� · Hav +

1

4
Eav

� ·
�

��
���0�r�� · Eav,

�53�

which is coincident with the usual textbook formula for local
materials.

B. Heating rate

In this section, we discuss the definition of the macro-
scopic heating rate in an arbitrary structured material. As in
Sec. II, it is supposed that the material is formed by a regular
lattice of dielectric or metallic inclusions in a host medium.
Here, we admit that the inclusions may be lossy, being char-
acterized by the complex permittivity �=��+ i��.

The microscopic heating rate is

qh�r� =
1

2
Re�e�r� · jd

��r�� , �54�

where e is the microscopic electric field and jd�r�=−i���
−�0�e is the induced microscopic density of current. Let us
consider an arbitrary solution �e ,b� of the homogenization
problem formulated in Sec. II B, i.e., a solution of the Max-
well’s equations in Eq. �2� for an external current density of
the form je=Je,ave

ik·r, with Je,av a constant vector. As dis-
cussed in Sec. II B, for such excitation the microscopic fields
have the Bloch-Floquet property. Thus, assuming that the
wave vector k is real valued �k is determined by the excita-
tion�, the spatially averaged heating rate is

qh,av =
1

2Vcell
�

�

Re�e�r� · jd
��r��d3r

=
1

Vcell
�

�

�

2
���r��e�r��2d3r . �55�

The objective is to relate the macroscopic heating rate �de-
fined in terms of the microscopic fields as shown above� with
the macroscopic fields and with the nonlocal dielectric func-
tion.

To this end, we use the fact that an arbitrary solution of
the homogenization problem �i.e., the differential system as-
sociated with Eq. �2� and je=Je,ave

ik·r� has the following in-
tegral representation:20

e�r� = Eave
ik·r + i��0�

�

G�p0�r�r�;k� · jd�r��d3r�, �56�

where Eav= �e� is the amplitude of the macroscopic field
�which depends on the amplitude of the external current
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Je,av� and G�p0 is the Green’s function dyadic introduced in
Ref. 20 that verifies �assuming the time variation e−i�t�,

� � � � G�p0 − ��

c
�2

G�p0

= I�eik�r−r����
I

��r − r� − rI� −
1

Vcell
� �57�

being rI a generic lattice point. Thus, substituting Eq. �56�
into the definition of the macroscopic heating rate, it is clear
that

qh,av =
1

2Vcell
Re	Eav · �

�

eik·rjd
��r�d3r


+
1

2Vcell
Re	i��0�

�
�

�

jd
��r� · G�p0�r�r�;k�

· jd�r��d3rd3r�
 . �58�

However, it is simple to verify that for k real valued the

Green’s dyadic G�p0 verifies G�p0�r� �r ;k�= �G�p0�r �r� ;k��†

�the superscript † represents the conjugate transpose� and
this implies that the second term in the right-hand side of Eq.
�58� vanishes. On the other hand, the integral associated with
the first term can be easily related to the generalized polar-
ization vector Pg,av through the use of Eq. �9�. Thus, we
conclude that

qh,av =
1

2
Re�i�Eav · Pg,av

� � =
1

2
Re�i�Eav · Dg,av

� � , �59�

where the second identity is a consequence of the constitu-
tive relation �8�. Therefore we have demonstrated that, pro-
vided the microscopic fields are Bloch-Floquet waves asso-
ciated with a real-valued wave vector k and the external
excitation is of the form je=Je,ave

ik·r with Je,av a constant
vector, then the spatial averaged heating rate is exactly
qh,av= 1

2Re�−i�Eav
� ·�ef f��� ,k� ·Eav�. It should be mentioned

that considering k real valued is not incompatible with the
presence of loss because as mentioned before such spatial
variation can be imposed by an external excitation of the
form je=Je,ave

ik·r. Thus, in presence of loss, Eq. �59� does
not apply to the natural Bloch-Floquet modes of the material
�i.e., Bloch-Floquet waves associated with je=0�. Indeed, at
least for a general spatially dispersive material, it is not pos-
sible to obtain a strict relation between the averaged heating
rate and the macroscopic fields when the material is lossy
and k is complex valued.

Let us consider now the particular case where the materi-
al’s response is local �with no magnetoelectric coupling� and
is described by local permittivity and permeability tensors,
�r���� and �r����, as also considered in the end of Sec. IV A.
In such conditions, the macroscopic heating rate is given by

qh,av =
1

2
Re�− i�Eav

� · �0�r���� · Eav�

+
1

2
Re	− i�Eav

� · � 1

�2�0
k � ��r�

−1 − I�� � k� · Eav
 .

�60�

Using now the vector properties Eqs. �10a� and �36�, it is
readily found that

qh,av =
1

2
Re�− i��Eav

� · �0�r���� · Eav − Bav
� · �0

−1�r�
−1 · Bav�� .

�61�

Defining the macroscopic magnetic field in the usual way,
Hav=�0

−1�r�
−1 ·Bav we may rewrite the above formula as

qh,av =
1

2
Re�− i��Eav

� · �0�r���� · Eav + Hav
� · �0�r���� · Hav��

�62�

consistently with a classical textbook formula.27 Hence, we
have shown that the traditional formula for the macroscopic
heating rate in local media is completely consistent with the
results obtained directly from microscopic theory.

It is interesting to note that Eq. �62� is valid for arbitrary
Eav and arbitrary �real valued� k since both these parameters
are determined by the external excitation. On the other hand,
from Eq. �55� it is clear that for passive materials qh,av
0.
But since Eav and k are independent parameters determined
by the source, and because �r���� and �r���� are symmetric
tensors, this is only possible if both Im��r����� and Im��r��
are nonnegative tensors �A� is a non-negative tensor if

v� ·A� ·v
0 for arbitrary v�. Therefore in a local isotropic
material the imaginary part of the permeability cannot be
negative, unlike what was erroneously claimed in Refs. 17
and 32. Such conclusion was drawn in Ref. 32 based on
numerical calculations of the effective parameters of a
metamaterial. However, as argued by Efros in Ref. 33, such
result would contradict the second law of thermodynamics
and can only be explained by the periodicity of the material
and the emergence of nonlocal effects, an explanation with
which the authors of Ref. 32 also agreed.34

V. CONCLUSION

In this work we have shown that in some circumstances it
is possible to establish a rigorous mathematical relation be-
tween the macroscopic fields and macroscopic quadratic
physical entities such as the cell-averaged microscopic Poyn-
ting vector, the cell-averaged microscopic heating rate, and
the cell-averaged stored microscopic electromagnetic energy.
The derived formulas �which agree with well-known text-
book formulas when these are available� in general require
that the microscopic field is a Bloch-Floquet natural mode of
the structured metallic-dielectric periodic material �or more
generally a superposition of such modes�. With the exception
of the formula of the heating rate �Eq. �59��, all the results
require that the metamaterial is lossless. In fact, apparently,
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for an absorbing spatially dispersive medium it is not pos-
sible to relate the macroscopic Poynting vector �or stored
energy� with the macroscopic fields and with �ef f��� ,k�, even
if we try to define these entities directly from the macro-
scopic Maxwell’s equations as done in Ref. 28. As discussed
in Ref. 28, p. 63, the reason is that the nonlocal dielectric
function determines the response of the system to the mac-
roscopic electric field and that in case of loss this response
may be the same also in conditions where the energy stored
in the system is different �i.e., in case of loss we can have
two linear systems with the same response but with different
stored energies�. Therefore in case of an absorbing medium
the nonlocal dielectric function �ef f��� ,k� does not convey
sufficient information to retrieve the stored energy and the
Poynting vector.

In particular, we have shown that the traditional defini-
tions of the Poynting vector and heating rate in local media
are absolutely accurate. The recent claims14 that the correct
definition for the Poynting vector in metamaterials that ex-

hibit artificial magnetism should be Sav= 1
2Re�E�

B�

�0
� were

found completely unsubstantiated.
One of original results of this work �Eq. �47�� establishes

the exact relation between the macroscopic Poynting vector
and the macroscopic fields for a superposition of Bloch-
Floquet natural modes, possibly associated with a complex
wave vector. This result may be quite useful for study of the
problem of plane-wave incidence at an interface between dif-
ferent media and, in particular, to define boundary conditions
consistent with the conservation of the power flow in spa-
tially dispersive media.35–38 These topics will be addressed in
future work.
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